Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3631, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684731

RESUMO

Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.


Assuntos
DNA Mitocondrial , Complexo I de Transporte de Elétrons , Complexo I de Transporte de Elétrons/deficiência , Mitocôndrias , Doenças Mitocondriais , Doença de Parkinson , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Humanos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Masculino , DNA Mitocondrial/genética , Feminino , Mitocôndrias/metabolismo , Mitocôndrias/genética , Idoso , Substância Negra/metabolismo , Substância Negra/patologia , Pessoa de Meia-Idade , Fenótipo , Neurônios/metabolismo
2.
Nat Med ; 23(8): 990-996, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650457

RESUMO

The endocrine-derived hormone fibroblast growth factor (FGF) 19 has recently emerged as a potential target for treating metabolic disease. Given that skeletal muscle is a key metabolic organ, we explored the role of FGF19 in that tissue. Here we report a novel function of FGF19 in regulating skeletal muscle mass through enlargement of muscle fiber size, and in protecting muscle from atrophy. Treatment with FGF19 causes skeletal muscle hypertrophy in mice, while physiological and pharmacological doses of FGF19 substantially increase the size of human myotubes in vitro. These effects were not elicited by FGF21, a closely related endocrine FGF member. Both in vitro and in vivo, FGF19 stimulates the phosphorylation of the extracellular-signal-regulated protein kinase 1/2 (ERK1/2) and the ribosomal protein S6 kinase (S6K1), an mTOR-dependent master regulator of muscle cell growth. Moreover, mice with a skeletal-muscle-specific genetic deficiency of ß-Klotho (KLB), an obligate co-receptor for FGF15/19 (refs. 2,3), were unresponsive to the hypertrophic effect of FGF19. Finally, in mice, FGF19 ameliorates skeletal muscle atrophy induced by glucocorticoid treatment or obesity, as well as sarcopenia. Taken together, these findings provide evidence that the enterokine FGF19 is a novel factor in the regulation of skeletal muscle mass, and that it has therapeutic potential for the treatment of muscle wasting.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular , Obesidade , Sarcopenia , Animais , Western Blotting , Tamanho Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Força da Mão , Humanos , Imuno-Histoquímica , Imunoprecipitação , Técnicas In Vitro , Proteínas Klotho , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Tamanho do Órgão/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transcriptoma
3.
Aquat Toxicol ; 146: 239-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24334006

RESUMO

There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARß, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARß, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes encoding hepatic PPARγ, adipose FABP4, adipose ADIPOQ and ΣPOP concentrations was observed. These findings suggest that lipid metabolism may be affected by contaminant exposure in the Baltic population. mRNA expression of genes encoding PPARß, PPARγ, FABP4 and ADIPOQ were similar between the mid and inner adipose layer. Hepatic mRNA expression of genes encoding PPARα and PPARγ was higher in the pre-molting individuals compared to the molting ones highlighting differential regulation of these metabolic sensors through the molting period.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Focas Verdadeiras/fisiologia , Poluentes Químicos da Água/toxicidade , Tecido Adiposo/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Feminino , Lipídeos/análise , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , PPAR gama/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Focas Verdadeiras/genética , Focas Verdadeiras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...